Decomposition of soil and plant carbon from pasture systems after 9 years of exposure to elevated CO2: impact on C cycling and modeling

ثبت نشده
چکیده

Elevated atmospheric CO2 may alter decomposition rates through changes in plant material quality and through its impact on soil microbial activity. This study examines whether plant material produced under elevated CO2 decomposes differently from plant material produced under ambient CO2. Moreover, a long-term experiment offered a unique opportunity to evaluate assumptions about C cycling under elevated CO2 made in coupled climate–soil organic matter (SOM) models. Trifolium repens and Lolium perenne plant materials, produced under elevated (60 Pa) and ambient CO2 at two levels of N fertilizer (140 vs. 560 kg ha 1 yr ), were incubated in soil for 90 days. Soils and plant materials used for the incubation had been exposed to ambient and elevated CO2 under free air carbon dioxide enrichment conditions and had received the N fertilizer for 9 years. The rate of decomposition of L. perenne and T. repens plant materials was unaffected by elevated atmospheric CO2 and rate of N fertilization. Increases in L. perenne plant material C : N ratio under elevated CO2 did not affect decomposition rates of the plant material. If under prolonged elevated CO2 changes in soil microbial dynamics had occurred, they were not reflected in the rate of decomposition of the plant material. Only soil respiration under L. perenne, with or without incorporation of plant material, from the low-N fertilization treatment was enhanced after exposure to elevated CO2. This increase in soil respiration was not reflected in an increase in the microbial biomass of the L. perenne soil. The contribution of old and newly sequestered C to soil respiration, as revealed by the C-CO2 signature, reflected the turnover times of SOM–C pools as described by multipool SOM models. The results do not confirm the assumption of a negative feedback induced in the C cycle following an increase in CO2, as used in coupled climate–SOM models. Moreover, this study showed no evidence for a positive feedback in the C cycle following additional N fertilization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مدل‌سازی اثر تغییر اقلیم بر انتشار دی‌اکسیدکربن خاک در مراتع خشک (جنوب ایران)

Introduction: Carbon stored in soils particularly in arid rangelands soils is the most significant carbon sink in terrestrial ecosystems. In arid rangelands, Soils have special places in both carbon sequestration and mitigate global warming. Therefore, any small change in the soil organic carbon (SOC) leads to a significant impact on the CO2 concentration in the atmosphere. Studies have shown t...

متن کامل

اثر چرای دراز مدت بر پویایی کربن لاشبرگ در اکوسیستم مرتعی سبزکوه استان چهارمحال و بختیاری

Over-grazing may induce changes in the dynamics of plant residue carbon and soil organic carbon (SOC). The objective of this study was to evaluate the litter quality of three dominant pasture species, and the relationship between litter quality and C dynamics under different range managements in native rangelands of SabzKou. Aboveground litters from three dominant species including, Agropyron i...

متن کامل

اثر چرای دراز مدت بر پویایی کربن لاشبرگ در اکوسیستم مرتعی سبزکوه استان چهارمحال و بختیاری

Over-grazing may induce changes in the dynamics of plant residue carbon and soil organic carbon (SOC). The objective of this study was to evaluate the litter quality of three dominant pasture species, and the relationship between litter quality and C dynamics under different range managements in native rangelands of SabzKou. Aboveground litters from three dominant species including, Agropyron i...

متن کامل

Rhizodeposition-induced decomposition increases N availability to wild and cultivated wheat genotypes under elevated CO2

ElevatedCO2may increasenutrient availability in the rhizospherebystimulatingNrelease fromrecalcitrant soil organic matter (SOM) pools through enhanced rhizodeposition. We aimed to elucidate how CO2induced increases in rhizodeposition affect N release from recalcitrant SOM, and howwild versus cultivated genotypes of wheat mediated differential responses in soil N cycling under elevated CO2. To q...

متن کامل

Cumulative response of ecosystem carbon and nitrogen stocks to chronic CO2 exposure in a subtropical oak woodland

Rising atmospheric carbon dioxide (CO₂) could alter the carbon (C) and nitrogen (N) content of ecosystems, yet the magnitude of these effects are not well known. We examined C and N budgets of a subtropical woodland after 11 yr of exposure to elevated CO₂. We used open-top chambers to manipulate CO₂ during regrowth after fire, and measured C, N and tracer (15) N in ecosystem components througho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004